
Section-C

Lecture-23

Dronacharya College of Engineering

Several definitions:

“Testing is the process of establishing confidence that a program or system
does what it is supposed to.” by Hetzel 1973

“Testing is the process of executing a program or system with the intent of
finding errors.” by Myers 1979

“Testing is any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results.”

by Hetzel 1983

What is Software Testing

Software testing is a process used to identify the
correctness, completeness and quality of developed
computer software.

It is the process of executing a program /
application under positive and negative conditions
by manual or automated means. It checks for the :-
 Specification
 Functionality
 Performance

Software Testing

The Major Objectives of Software Testing:

- Uncover as many as errors (or bugs) as possible in a given timeline.

- Demonstrate a given software product matching its requirement specifications.

- Validate the quality of a software testing using the minimum cost and efforts.

- Generate high quality test cases, perform effective tests, and issue correct and
helpful problem reports.

Major goals:

uncover the errors (defects) in the software, including errors in:
- requirements from requirement analysis
- design documented in design specifications
- coding (implementation)
- system resources and system environment
- hardware problems and their interfaces to software

Testing Objectives

What …????
…is an ”ERROR”??

….is a ”Bug”??

….is Fault, Failure ??

Bug, Fault & Failure

Error : An error is a human action that produces the incorrect result that
results in a fault.

Bug : The presence of error at the time of execution of the software.

Fault : State of software caused by an error.

Failure : Deviation of the software from its expected result. It is an event.

A person makes an Error
That creates a fault in software

That can cause a failure in operation

- Test manager
- manage and control a software test project
- supervise test engineers
- define and specify a test plan

- Software Test Engineers and Testers
- define test cases, write test specifications, run tests

- Independent Test Group

- Development Engineers
- Only perform unit tests and integration tests

- Quality Assurance Group and Engineers
- Perform system testing
- Define software testing standards and quality control process

Who does Software Testing

Who is a Software Tester??..

Software Tester is the one who performs testing and
find bugs, if they exist in the tested application.

- Test Planing
Define a software test plan by specifying:

- a test schedule for a test process and its activities, as well as
assignments
- test requirements and items
- test strategy and supporting tools

- Test Design and Specification
- Conduct software design based well-defined test generation
methods.
- Specify test cases to achieve a targeted test coverage.

- Test Set up:
- Testing Tools and Environment Set-up

- Test Operation and Execution
- Run test cases manually or automatically

Software Testing Activities

- Test Result Analysis and Reporting
Report software testing results and conduct test result analysis

- Problem Reporting
Report program errors using a systematic solution.

- Test Management and Measurement
Manage software testing activities, control testing schedule, measure testing

complexity and cost

- Test Automation
- Define and develop software test tools
- Adopt and use software test tools
- Write software test scripts and facility

Software Testing Activities

Software Testability
Software testability means how easily a computer program can be tested.
There are certain metrics that can be used to measure testability
Following are some key characteristics of testability.

1. Operability: the better it works, the more efficient is testing process

2. Observability: what you see is what you test

3. Controllability: the better it is controlled , the more we can automate the
testing process

4. Decomposability: by controlling the scope of testing, we can more quickly
isolate problems and perform smarter testing.

5. Simplicity: the less there is to test, the more quickly we can test it.

6. Stability: the fewer the changes .

7. Understandability: the more information we have ,the smarter we will test

•Principle #1: Complete testing is impossible.

•Principle #2: Software testing is not simple.
•Reasons:

•Quality testing requires testers to understand a system/product completely
•Quality testing needs adequate test set, and efficient testing methods
•A very tight schedule and lack of test tools.

•Principle #3: Testing is risk-based.

•Principle #4: Testing must be planned.

•Principle #5: Testing requires independence.

•Principle #6: Quality software testing depends on:
•Good understanding of software products and related domain application
•Cost-effective testing methodology, coverage, test methods, and tools.
•Good engineers with creativity, and solid software testing experience

Software Testing Principles

•Principle #7: All test should be based on customer requirements

•Principle #8: Software testing should be planned long before testing begins

•Principle #9: Document test cases and test results.

•Principle #10: Use effective resources to test.

Software Testing Principles

- We can test a program completely. In other words, we test a program exhaustively.

- We can find all program errors as long as test engineers do a good job.

- We can test a program by trying all possible inputs and states of a program.

- A good test suite must include a great number of test cases.

- Good test cases always are complicated ones.

- Software test automation can replace test engineers to perform good software
testing.

- Software testing is simple and easy. Anyone can do it. No training is needed.

Software Testing Myths

When to Start Testing in
SDLC

• Requirement
• Analysis
• Design
• Coding
• Testing
• Implementation
• Maintenance

Testing starts from Requirement Phase

Project Initiation

System Study
Summary Reports

Analysis

Regression Test

Report Defects

Execute Test Cases
(manual /automated)

Design Test Cases

Test Plan

Testing Life Cycle

Test Plan
A test plan is a systematic approach to testing a system
i.e. software. The plan typically contains a detailed
understanding of what the eventual testing workflow will
be.

Test Case
A test case is a specific procedure of testing a particular

requirement.

OR

A test case has components that describe an input, action or
event and an expected response, to determine if a feature of an
application is working correctly

Why we write Test Cases ?
The basic objective of writing test cases is to validate the testing
coverage of the application. If you are working in any CMM
company then you will strictly follow test cases standards.

How to write a test cases?
There is a format to write a test case.
 Field in test cases:
 Test case id:
 Unit to test: what to be verified
 Assumptions
 Test Data: variables and their values
 Steps to be executed:
 Expected results:
 Actual result:
 Pass/Fail:
 Comments:

Testing

Unit Test Integration
Test System Test

Functional
Test

Performance
Test

Acceptance
Test

Alpha Test

Beta Test

-Performance
-Functionality
-Interface

-Integration
-Interface

-Quality
-Security
-reliability
-Human factors

Unit Test

1.1. The firs level in the testing process is called unit
testing.

2. Unit testing concerns testing smallest component
of the software

3. Unit testing is done by Developer.

Unit Test (Component Level Test)

Unit testing: Individual components are tested independently to
ensure their quality. The focus is to uncover errors in design
and implementation, including

- data structure in a component
- program logic and program structure in a component
- component interface
- functions and operations of a component

Unit testers: developers of the components.

Operations and
Functions with I/O

White-box
interface

input

output

Internal logic, data, structure

outp
ut

input
interface

operation

Black-box

Unit Test Procedures

Test Cases

Interface
Local data Structure
Boundary Condition
Error handling path

Driver

Module to
be tested

StubStud

Result

Unit Test Procedures
1. Each test case should be linked with a set of anticipated

results.

2. As a module is not a stand alone program, driver and
stub software must be produced for each test units.

3. In most of applications a driver is nothing than a “main
program” that accept test case data, passes such data to
the component(to be tested), and print relevant results.

4. Stubs serve to replace modules that are subordinate to
the component to be tested

Integration Testing

After completing the unit testing and dependent modules
development, programmers connect the modules with
respect to HLD for Integration Testing through below
approaches.

A study has shown that almost 40% of the error are due to
integration and interface problems. there are number of
strategies that can be followed to do integration testing.

 Incremental Strategy
Non- Incremental Strategy
Mixed Strategy

Integration Testing

Integration test: A group of dependent components are tested together
to ensure their the quality of their integration unit.

The focus is to uncover errors in:

- Design and construction of software architecture
- Integrated functions or operations at sub-system level
- Interfaces and interactions between them
- Resource integration and/or environment integration

Integration testers: either developers and/or test engineers.

Component #1

Operations and
Functions with I/O

input

interface

operation

Component #2

Operations and
Functions with I/O

outp
ut

interface

operation

Approaches to Integration Testing
The various approaches used for integration testing are:

Big Bang Approach

Incremental Approach

Top Down Integration Testing

Bottom-up Integration Testing

Sandwich Integration Testing

Regression Testing

System Testing

After completing Unit and Integration testing
through white box testing techniques development
team release an .exe build (all integrated module) to
perform black box testing.

• Usability Testing
• Functional Testing
• Performance Testing
• Security Testing

System Testing

System test: The system software is tested as a whole. It verifies all
elements mesh properly to make sure that all system
functions and performance are achieved in the target
environment.

The focus areas are:
- System functions and performance
- System reliability and recoverability (recovery test)
- System installation (installation test)
- System behavior in the special conditions
(stress and load test)
- System user operations (acceptance test/alpha test)
- Hardware and software integration and collaboration
- Integration of external software and the system

System testers: test engineers in ITG or SQA people.

When a system is to be marketed as a software product, a testing process called
beta testing is often used.

Function Validation Testing

Validation test: The integrated software is tested based on requirements
to ensure that we have a right product.

The focus is to uncover errors in:
- System input/output
- System functions and information data
- System interfaces with external parts
- User interfaces
- System behavior and performance

Validation testers: test engineers in ITG or SQA people.

System

(Operations &
Functions
& Behavior)

User
interface

User External interfaces

Usability Testing
During this test, testing team concentrates on the user friendliness of
build interface. It consists of following sub tests.

• User Interface Test: Ease of use (screens should be understandable
to operate by End User)

• Look & Feel :- attractive

• Speed in interface :- Less number of task to complete task

• Manual Support Test :- Context sensitiveness of user manual.

Functional Testing
• The process of checking the behavior of the application.

• It is geared to functional requirements of an application.

• To check the correctness of outputs.

• Data validation and Integration i.e. inputs are correct or not.

Performance Testing
• LOAD TESTING – Also Known as Scalability Testing. During this

test, test engineers execute application build under customer expected
configuration and load to estimate performance.

• STRESS TESTING – During this test, Test engineers estimates the
peak load. To find out the maximum number of users for execution of
out application user customer expected configuration to estimate peak
load.
PEAK LOAD > CUSTOMER LAOD (EXPECTED)

• DATA VOLUME TESING -- Testing team conducts this test to find
the maximum limit of data volume of your application.

Security Testing

Testing how well the system protects against unauthorized
internal or external access, willful damage, etc, may require
sophisticated testing techniques

Smoke testing is non-exhaustive software testing,
ascertaining that the most crucial functions of a program
work, but not bothering with finer details.

Smoke testing

Alpha Testing

1. The application is tested by the users who doesn’t know about
the application.

2. Done at developer’s site under controlled conditions

3. Under the supervision of the developers.

Acceptance Testing

A formal test conducted to determine whether or not a system
satisfies its acceptance criteria and to enable the customer to
determine whether or not to accept the system.

It is the final test action before deploying the software. The
goal of acceptance testing is to verify that the software is ready
and can be used by the end user to perform the functions for
which the software was built.

Beta Testing
1. This Testing is done before the final release of the software to end-

users.

1. Before the final release of the software is released to users for testing
where there will be no controlled conditions and the user here is free
enough to do what ever he wants to do on the system to find errors.

Regression Testing

Testing with the intent of determining if bug fixes have been
successful and have not created any new problems. Also, this type of
testing is done to ensure that no degradation of baseline functionality
has occurred.

Monkey Testing

Testing the application randomly like hitting keys irregularly and try
to breakdown the system there is no specific test cases and
scenarios for monkey testing.

Verification and Validation
Software testing is one element of a broader topic that is often referred to as

===> Verification and Validation (V&V)

Verification --> refers to the set of activities that ensure that software correctly
implements a specific function.

Validation -> refers to a different set of activities that ensure that the software that
has been built is traceable to customer requirements.

Boehm [BOE81]:

Verification: “Are we building the product right?”
Validation: “Are we building the right product?”

The definition of V&V encompasses many of SQA activities, including
formal technical reviews, quality and configuration audits
performance monitoring, different types of software testing
feasibility study and simulation

Verification

 Verification is the process confirming
that -software meets its specification, done
through inspections and walkthroughs

Use – To identify defects in the product
early in the life cycle

Validation

 Validation is the process confirming
that it meets the user’s requirements. It
is the actual testing.

Verification : Is the Product Right
Validation : Is it the Right Product

Test Issues in Real World

Software testing is very expensive.

How to achieve test automation?????

When should we stop software testing?

Test criteria, test coverage, adequate testing.

Other software testing:

GUI Testing
Object-Oriented Software Testing
Component Testing and Component-based Software

Testing
Domain-specific Feature Testing
Testing Web-based Systems

Quality is defined as meeting the customer’s requirements and
according to the standards
The best measure of Quality is given by FURPS

 Functionality
Usability
 Reliability
 Performance
 Scalability

What is Quality ?

Quality is the important factor affecting an organization’s long
term performance.

 Quality improves productivity and competitiveness in any
organization.

Why Quality ?

Quality Assurance
Quality Assurance is a planned and systematic set of activities
necessary to provide adequate confidence that products and services
will conform to specified requirements and meets user needs.

•It is process oriented.
•Defect prevention based.
•Throughout the Life Cycle.
•It’s a management process.

Quality Control

Quality control is the process by which product quality is
compared with the applicable standards and the action taken
when non conformance is detected.

• It is product oriented
• Defect detection based

QA vs. QC
• Quality Assurance makes sure

that we are doing the right things,
the right Way.

• QA focuses on building in quality
and hence preventing defects.

• QA deals with process.

• QA is for entire life cycle.

• QA is preventive process.

• Quality Control makes sure the
results of what we’ve done are
what we expected .

• QC focuses on testing for quality
and hence detecting defects.

• QC deals with product.

• QC is for testing part in SDLC.

• QC is corrective process.

Bug Reporting Format
Bug Id : Sys_def_xyz_o1
Test case Id : Sys_xyz_o1
Bug Description : Specify the defect.
Bug Severity : Severity of the Defect
Bug Priority : Major or Minor
Bug Status : Status of the Defect
Identified by : ABC
Module : Database Operations
Project : XYZ Corporation
Dated : 22/9/03

Bug Priority

Priority- How important it is to correct that
specific bug

• High

• Moderate

• Low

Bug Life Cycle

New

Assigned

Tester finds the bug
and report it to Test Lead

Test Lead confirms
that it is a valid BugBug

Resolved

Re-open Verified

Closed

Deferred

C
os

t

Amount of Testing

N
o.

 o
f B

ug
s

Cost incurred

Bugs ratio

Stop Testing

When to Stop Testing

- Due to the testing time limit, it is impossible to achieve total confidence.

- We can never be sure the specifications are 100% correct.

- We can never be certain that a testing system (or tool) is correct.

- No testing tools can copy with every software program.

- Tester engineers never be sure that they completely understand a software
product.

- We never have enough resources to perform software testing.

- We can never be certain that we achieve 100% adequate software testing.

Software Testing Limits

